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Problem Set 1

This first problem set is designed to help you gain a familiarity with big-O notation and the basics 
of algorithmic analysis.  By the time you're done, you'll have a better sense for how to design and 
analyze algorithms and how to use big-O notation in the process.

Please read over the “Problem Set Advice” handout before starting this problem set .  It con-
tains information about our grading policies, procedures, and expectations for the assignments.  In 
particular, please be sure to write your answers different problems on separate pages to make 
it easier for us to grade.

As always, please feel free to drop by office hours or send us emails if you have any questions. 
We'd be happy to help out.

This problem set has 36 possible points.  It is weighted at 10% of your total grade.  The earlier 
questions serve as a warm-up for the later problems, so the difficulty of the problems increases 
over the course of this problem set.

Good luck, and have fun!

Due Wednesday, July 3 at 2:15 PM
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Problem One: Counting Sort (2 Points)
The counting sort algorithm is an algorithm for sorting an array of integers, each of which hap-
pens to fall in the range [0, U) for some number U.  Here is pseudocode for counting sort:

procedure countingSort(array A, int U)
    1. let counts = new array of size U
    2. for i = 0 to U – 1:
    3.    counts[i] = 0
    4. for i = 0 to length(A) – 1:
    5.    counts[A[i]] = counts[A[i]] + 1
    6. let index = 0
    7. for i = 0 to U – 1:
    8.    for j = 0 to counts[i] - 1:
    9.        A[index] = i
   10.        index = index + 1

 

We suggest tracing through this algorithm on some small arrays to get a sense for how it works.

One correct but loose analysis of counting sort's runtime is the following:

The loop on line 2 runs O(U) times and does O(1) work on each iteration, so it 
does a total of O(U) work.  The loop on line 4 runs O(n) times (where  n is the 
length of the input array) and does O(1) work on each iteration, so it does a total of 
O(n) work.  Thus the initial setup takes O(n + U) time.

Loop 7 has a nested loop within it.  The nested loop (loop 8) can execute at most 
O(n) times (because counts[i] ≤ n) and does O(1) work on each iteration, so it 
does at most O(n) work.  Therefore, since Loop 7 runs O(U) times, the work done 
by the loop is O(nU).

Therefore, the overall work done is O(nU).

While this analysis of the runtime is correct, it overestimates the amount of work done by this 
counting sort.  Prove that counting sort actually runs in time Θ(n + U).

(When doing this analysis, you do not need to use the formal definition of Θ notation.  You can 
use an intuitive analysis along the lines of the above.)

The next question didn't fit nicely on this page, 
so here's a picture of a happy puppy instead!
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Problem Two: O, Ω, and Θ notations (10 Points)
Over the course of the quarter, we will use O, Ω, and Θ notation to quantify properties of algo-
rithms – their runtimes, their memory usages, etc.  This question asks you to prove various proper-
ties about these notations or to show that certain properties do not necessarily hold.

For each of these problems, if you want to prove a result, you should offer a formal mathematical 
proof using the rigorous definition O, Ω, or Θ notation.  If you want to disprove a result, you can 
give a counterexample, but should prove why your counterexample is valid.

Assume all functions listed below have  as their domain and codomain.ℕ

i. Prove or disprove: For any functions f and g, f(n) + g(n) = Θ(max{f(n), g(n)}).

ii. Prove or disprove: If f(n) = O(g(n)), then 2f(n) = O(2g(n)).

iii. Prove or disprove: If f1(n) = Θ(g1(n)) and f2(n) = Θ(g2(n)), then f2(f1(n)) = Θ(g2(g1(n)).

iv. Prove or disprove: For any functions f and g, f(n) = O(g(n)) or g(n) = O(f(n)).  (This is an 
inclusive OR.)

v. Prove or disprove: n! = O(2n).

Problem Three: Signaling for Help (5 Points)
Suppose that you are stranded on a desert island.  You have a radio and a battery with you, and the 
radio is capable of transmitting at different integer power levels (e.g. 1W, 2W, 3W, 4W, …).  As 
soon as you transmit a distress signal with enough power for someone to receive it, you will get 
confirmation that the message was received and help will be sent to you.  Unfortunately, you don't 
know how close the nearest rescue crew is, so you don't know how much power to feed into the 
radio.  

Suppose that you need to feed at least n watts of power into the radio for your distress signal to be 
heard; that is, if you transmit at any power level greater than or equal to n watts, your signal will 
be received.  However, you do not know what n is.  Your goal is to design an algorithm for send-
ing a distress signal that does not use much more power than is necessary.

For example, you could try transmitting the distress signal at powers 1W, 2W, 3W, 4W, … until 
you reach power  nW, at which point you will get confirmation that the message was received. 
Unfortunately, this approach will use total power 1W + 2W + 3W + … + nW = Θ(n2)W, which 
can be problematic if n is large.  Fortunately, though, it's possible to send a distress signal using 
only Θ(n)W power.

Design an algorithm that will successfully transmit a distress signal, but which uses only Θ(n)W 
total power.  Remember that n is unknown to you.  Then:

• Describe your algorithm.

• Prove that your algorithm is correct.

• Prove that your algorithm uses Θ(n)W power.
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Problem Four: Searching a Grid (9 Points)
Suppose that you are given an  m ×  n grid of integers where each row and each column are in 
sorted order (we'll call this a sorted grid).  For example:

10 12 13 21 32 34 43 51 67 69 90 101 133

16 21 23 26 40 54 65 67 68 71 99 110 150

21 23 31 33 54 58 74 77 97 98 110 111 150

32 46 59 65 74 88 99 103 113 125 137 149 159

53 75 96 115 124 131 132 136 140 156 156 157 161

84 86 98 145 146 151 173 187 192 205 206 208 219

135 141 153 165 174 181 194 208 210 223 236 249 258

216 220 222 225 234 301 355 409 418 446 454 460 541
 

Design an O(m + n)-time algorithm that, given as input a sorted m × n grid and an integer, returns 
whether or not that integer is contained in the grid.  Your algorithm should use only O(1) addi-
tional space.  Then:

• Describe your algorithm.

• Prove that your algorithm is correct.

• Prove that your algorithm runs in time O(m + n) and uses O(1) additional space.

Problem Five: Emergency Route Planning (9 Points)
Suppose that you have an undirected graph representing a city's transportation network.  Each 
edge represents a street (which for now we'll assume is a two-way street), and each node repre-
sents an intersection.

Certain intersections in the city are hospitals, and you are interested in finding, for each intersec-
tion, the distance that intersection is from the nearest hospital,  as measured by the number of 
edges in the path from that intersection to the nearest hospital.  For example, given the following 
transportation network, where black nodes represent hospitals, the distances are as follows:
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(Continued on the next page)
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Let n be the number of nodes in the transportation network and let m be the number of edges.  Al-
though in the above example there were exactly three hospitals, any number of nodes in the grid 
can be hospitals.

i. Design an O(m + n)-time algorithm for computing the distance from each intersection to 
the closest hospital.  Note that your algorithm's asymptotic runtime should not depend on 
the total number of hospitals.  Then:

• Describe your algorithm.

• Prove that your algorithm is correct.

• Prove that your algorithm runs in time O(m + n).

(Hint: Try using one of the algorithms we've covered so far as a subroutine.) 

ii. Suppose that the city's transportation graph has some one-way streets, meaning that some 
of the edges in the transportation network are directed.  Briefly describe how you would 
modify your algorithm from part (i) to account for this while still maintaining the O(m + n) 
runtime.  You don't need to write a formal proof here – just give a one-paragraph descrip-
tion of your modified algorithm and a brief justification of why it works.

Problem Six: Course Feedback (1 Point)
We want this course to be as good as it can be, and we'd appreciate your feedback on how we're  
doing.  For a free points, please answer the following questions.  We'll give you full credit no mat-
ter what you write, as long as you write something.

i. How hard did you find this problem set?  How long did it take you to finish?  Does that 
seem unreasonably difficult or time-consuming for a five-unit course?

ii. Did you attend office hours?  If so, did you find them useful?

iii. Did you read through the textbook?  If so, did you find it useful?

iv. How is the pace of this course so far?  Too slow?  Too fast?  Just right?

v. Is there anything in particular we could do better?  Is there anything in particular that you 
think we're doing well?


